Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neurotoxicology ; 79: 110-121, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32380192

RESUMEN

ß-N-Methylamino-l-alanine (BMAA), a neurotoxin naturally produced by cyanobacteria, diatoms and dinoflagellates, constitutes a serious environmental and health threat especially during acute blooms, which are becoming more frequent. This neurotoxin is implicated in several neurodegenerative diseases (ND) in humans through contaminated water or food consumption. Even low doses of neurotoxic compounds (NCs) can have lasting effects later in life. In this sense, early stages of development constitute a period of high sensitivity to environmental influence, particularly for the central nervous system. To understand the mechanisms underlying the delayed effects of NCs, newly hatched larvae of the mangrove rivulus fish, Kryptolebias marmoratus, were exposed to two sub-lethal doses of BMAA (20 µg/L and 15 mg/L) for 14 days. This fish naturally produces isogenic lineages due to its self-fertilizing reproduction, which is unique case among vertebrates. It thus provides genetic characteristics that allow scientists to study organisms' true reaction norm, minimizing genetic variability and focusing exclusively on the effects of the environment. Effect assessment was performed at different levels of biological organization to detect inconspicuous effects of BMAA, since this molecule displays long retention in organisms. BMAA effects on life history traits as well as behavioral traits such as boldness and aggressiveness were assessed more than 100 days after exposure. In addition, the relative expression of 7 potential BMAA target genes was studied, given their involvement in neurotransmission or their association with individual variation in boldness and aggressiveness. Selected genes code for reticulon 4 (RTN4), glutamate vesicular transporter 1 (Slc17a7), glutamine synthetase a (Glula), dopamine receptor D4 (DRD4), monoamine oxidase A (MAOA), calmodulin (CaM) and epedymine (Epd). Despite observing no effects of BMAA on growth, reproduction and behavioral traits, BMAA induced a significant increase of the expression of CaM and MAOA genes at 20 µg/L BMAA compared to the control group. A significant decrease of expression was observed between this lowest BMAA dose and 15 mg/L for DRD4, MAOA and CaM genes. Our results suggest disruption of glutamate turnover, intracellular dopamine depletion and activation of astrocyte protective mechanisms, indicating that BMAA might be excitotoxic. Our study revealed that BMAA can have long-lasting effects on the brain that are suspected to affect phenotypic traits with aging. Furthermore, it highlights the importance of studying delayed effects in ecotoxicological studies.


Asunto(s)
Aminoácidos Diaminos/toxicidad , Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Ciprinodontiformes , Neurotoxinas/toxicidad , Factores de Edad , Animales , Encéfalo/metabolismo , Toxinas de Cianobacterias , Ciprinodontiformes/genética , Ciprinodontiformes/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Regulación de la Expresión Génica , Autofecundación , Factores de Tiempo
2.
J Xenobiot ; 8(1): 7820, 2018 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-30701065

RESUMEN

Mangrove rivulus, Kryptolebias marmoratus, is a hermaphrodite fish capable of self-fertilization. This particularity allows to naturally produce highly homozygous and isogenic individuals. Despite the low genetic diversity, rivulus can live in extremely variable environments and adjust its phenotype accordingly. This species represents a unique opportunity to clearly distinguish the genetic and non-genetic factors implicated in adaptation and evolution, such as epigenetic mechanisms. It is thus a great model in aquatic ecotoxicology to investigate the effects of xenobiotics on the epigenome, and their potential long-term impacts. In the present study, we used the mangrove rivulus to investigate the effects of the neurotoxin b-N-methylamino-L-alanine (BMAA) on larvae behaviors after 7 days exposure to two sub-lethal concentrations. Results show that BMAA can affect the maximal speed and prey capture (trials and failures), suggesting potential impacts on the organism's fitness.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...